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Abstract—We present a methodology for correcting color im-
ages taken in practical indoor environments, such as laboratories,
factories, and studios, that explicitly models illuminant location,
surface reflectance and geometry, and camera responsivity. We
explicitly model surfaces by taking our color images with cor-
responding registered three-dimensional (3-D) range images,
which provide surface orientation and location information for
every point in the scene. We automatically detect regions where
color correction should not be applied, such as specularities,
coarse texture regions, and jump edges. This correction results
in objective color measures of the imaged surfaces. This kind
of integrated, comprehensive system of color correction has not
existed until now. i.e., it is the first of its kind in computer vision.
We demonstrate results of applying this methodology to real
images for applications in photorealistic rerendering, skin lesion
detection, burn scar color measurement, and general color image
enhancement. We also have tested the method under different
lighting configurations and with three different range scanners.

Index Terms—Burn scars, color calibration, color correction,
computer vision, image processing, light calibration, range images,
realistic re-endering, skin color.

I. INTRODUCTION

TIS VERY OFTEN desirable to use information in color im-

ages to solve problems. However, the color image formation
process is very complicated, even in constrained environments
such as an indoor laboratory, factory, or studio where illumi-
nation can be engineered and color cameras can be modeled.
In medical imaging applications such as burn scar characteri-
zation and skin lesion detection, issues of surface shading, illu-
mination variation, and surface texture variegation complicate
most automated analysis algorithms. In the context of imaging
for computer graphics, i.e., capturing texture map images, sur-
face shading, texture and illumination variation effects have to
be modeled by the rendering process. We would like to elimi-
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nate these effects in images that we capture for use as texture
maps so that our rendering will have more realism. Our motiva-
tion in this research is to use light source calibration and surface
geometry estimation to extract objective color from images that
have varying illumination [1], [2]. For our system we assume
that the scene is an indoor scene that is characterized as having
one or more illuminant that may be practically considered as
point sources, or groups of point sources. The surfaces in the
scene may be of any shape and may have surface reflectance
that can be modeled by a bidirectional reflectance distribution
model (BRDF) at any given surface point or patch, i.e., having
a diffuse and specular component. We assume that for applica-
tion a conventional color charge coupled device (CCD) camera
is used. The proposed system is suitable for any application
where camera position, response, and illumination location may
be modeled prior to imaging one or more scenes in the local en-
vironment.

Our strategy for color correction of images is based on mod-
eling the three major components of image formation: illumina-
tion, reflectance, and responsivity. The integral of the product of
illumination, reflectance, and responsivity with respect to wave-
length yields color stimulus. We model illumination by cali-
brating the positions of all of the illumination sources that light
the scene. We use range images to measure the geometry of the
scene and correct for surface shading and brightness variation
due to changing distance from the illumination. We also use
range information to identify specular highlights, edges, and re-
gions of coarse surface texture. Finally, we model the position,
orientation and responsivity of the camera used for image cap-
ture.

Fig. 1 illustrates the stages of the objective color extraction
methodology. Each aspect of the scene (illumination, surface
information, and camera response) are modeled and calibrated.
Before imaging the scenes of interest for a given application,
we calibrate light sources using two devices: a Macbeth Col-
orchecker chart, and a triangulation device. The color chart (not
shown in this print version) characterizes camera response and
illumination color. The triangulation device gives us the three-
dimensional (3-D) locations of the light sources relative to the
camera. The triangulation device used for calibrating the light
source direction and location consists of three specular spheres
of known size and relative location. Our technique for cali-
brating the light source geometry is highly practical for a lab-
oratory or studio setting since it assumes that the light sources
are near the scene of interest. We estimate scene geometry using
range imagery to estimate surface normals. We then segment the
range image and use range texture to identify smooth or coarse
surfaces in the scene. Texture from range, especially from gen-
eral surfaces is a new innovation in information extraction from
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Fig. 1. System overview diagram for computing objective color.

range images developed for this work. Next, we combine the
light source locations and scene geometry information to esti-
mate where specular highlights appear in the image. Specular
highlight regions contain mainly the intensity of the illuminant,
and not the underlying surface, thus, no objective surface color
information is present in these areas. We also detect coarse tex-
ture regions, noisy range, and jump edges. These types of sur-
face regions violate our aforementioned surface modeling as-
sumptions. Lastly, we correct for nonlinear camera response and
off-white illumination color. This kind of integrated, compre-
hensive system of color correction has not existed until now,
i.e., it is the first of its kind in computer vision.

The following subsection gives a discussion of related
work. Section II describes the camera calibration, light source
calibration, color correction methodologies. The results of ap-
plying these techniques to several applications including burn
scars, photorealistic rerendering, and color correction will be
presented in Section III. Finally, Section IV offers conclusions
drawn from this research.

A. Related Work

One class of related work is the formulation of illumination-
invariant measures of objective color [3]-[5]. We choose instead
to directly calibrate the illumination and surface geometry of
an imaged scene. This approach mirrors the computer graphics
paradigm of modeling the scene and illumination to produce a
realistic image, except that we seek to extract accurate surface
reflectance parameterization from actual scenes.

Another area of related work is that of computational
color constancy. Strictly speaking, humans do not have color
constancy in the sense that the exact color of an object is
recognizable under any arbitrary illumination conditions, as
a variety of psychophysical experimental evidence demon-
strates [6], [7]. The area of computational color constancy
seeks to achieve through algorithmic means what human color
recognition cannot: color recognition under arbitrary lighting
conditions. This is a difficult and under-constrained problem,
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as evidenced by the large number of attempts to solve it,
for example [7]-[16]. Such solutions often make unrealistic
assumptions about the imaged scene that are impractical, such
as two-dimensionality and smoothly-varying illumination. Our
approach mitigates the under-constrained characteristics of
the problem by taking advantage of range data and calibrated
illumination.

One particularly relevant related project is the Digital
Michelangelo Project [17]. This project created a sophisticated
system for recording the surface reflectance and geometric
shape of statues created by Michelangelo. A series of color
and range images were obtained over the entire outer surface
of a number of marble statues which were converted to surface
reflectance information using a calibrated camera, illumination,
and range information from the surface. In order to acquire
reliable color, the spotlight illumination was carefully chosen
and controlled with respect to the camera, and ambient illu-
mination effects were later subtracted out in post processing.
Like the color processing pipeline used in this project, our
system estimates the diffuse component of the bi-directional
reflectance distribution function (BRDF) [18] over the entire
surface by taking advantage of the coregistered surface geom-
etry. Our methodology for color correction differs from this
approach by calibrating all of the contributing light sources a
priori and using a single image from which surface reflectance
characteristics are derived.

In the area of texture from range, there are other approaches
related to ours that are of interest. One approach described in
[19] uses co-occurrence matrices as a means of deriving texture
measures from range. They also resample the range data and
use a robust least median squares estimator to remove outliers.
However, this approach has only been demonstrated on images
from one structured light scanner where the sampled surfaces
were orthogonal to the optical axis of the camera. In our results
we demonstrate applicability of our approach to both planar and
nonplanar surfaces that may vary in surface orientation with re-
spect to the direction of view. In [20] there is another co-oc-
currence matrix based approach for measuring 3-D texture. The
quantitative results were given only for images of simple scenes
with planar surfaces, and the authors note that when the method
is applied to real scenes with surfaces of varying type and ori-
entation, it is only practical to produce qualitative results. In our
results we have included considerable quantitative results from
our approach to texture from range. Another interesting related
work is [21], in which a simple histogram-based algorithm is ap-
plied to laser range finder images taken from a mobile robotics
platform to quickly (in real time) classify regions of foliage.
Although this approach was effective for classifying regions of
grass and rocks, it lacks the fidelity needed for the applications
that are demonstrated in our results, i.e., photorealistic reren-
dering and skin lesion detection.

II. METHODOLOGY

A. Camera Response Calibration and Illumination
Color Correction

When color images are captured by a digital camera, such
as a CCD, the response of the three color bands are usually
somewhat different from each other. For instance, one band may
respond more strongly to intensity than another. If this is the
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Fig. 2. Plot of relative intensity versus camera response. The curves are based
on five samples for each color band. The white line represents the ideal camera
response. Actual curves shown as green (highest), red, and blue (lowest).

case, then the resulting image will have a hue shift to that color
when imaging a white or grey patch, e.g., if the blue channel is
stronger than the red and green, the white patch will appear to
have a bluish hue. Also, the responses of a CCD are generally
nonlinear with respect to illumination. Many machine vision al-
gorithms implicitly assume that camera response varies linearly
with intensity, such as in edge detection that is based funda-
mentally on contrast between groups of pixels. We would like
to calibrate the camera response in order to measure color from
images objectively.

Our camera response calibration uses the Macbeth Col-
orchecker reference chart. This chart contains 24 patches that
resemble colors from the natural environment (skin, grass, soil),
primary colors (red, green, and blue), secondary colors (yellow,
cyan, and magenta) and achromatic colors ranging from white
to black. We use the achromatic, neutral color patches to sample
camera response. For all six neutral patches, we take the mean
intensities in each band over a 10 x 10 window centered on the
patch. We know the absolute reflectance values of the patches.
These patches also have the useful property of reflecting light
the same way in all parts of the visible spectrum. The six neutral
patches have reflectance values (expressed as percentage of
illumination intensity) of 2.5% (black), 9.0%, 21.0%, 36.5%,
59.5%, and 88.5% (white).

Fig. 2 shows a plot of the reflectance values from an image
of the chart with estimated curves drawn through the points.
Five of the six patches were actually used to create this plot
(black was omitted). The goal of this calibration is to remap
the actual responses (estimated by the curves in this figure) to
the ideal linear response (represented by the line in the figure).
There are three curves here, one for each color channel of the
camera (not shown in this print version) used for our examples:
green (highest), red, and blue (lowest). Since we only start with
five samples per band, we would like to interpolate a continuous
function to represent the camera response over the entire range
of the camera. In this example we used a general order polyno-
mial interpolation algorithm, and we found that a fourth order
polynomial fit produces the smoothest, best fitting curve approx-
imation to our camera’s measured response. For other cameras
in general, we recommend starting with a second order fit and
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increasing order as needed to maximize curve smoothness and
minimize residual fit error to measured response values. We
found that including the black patch response sometimes pro-
duced curve fits that were not smooth. To improve the fit, we
removed the response from the black patch from the fitting al-
gorithm inputs. The black patch is the least important measure-
ment, since there the sampling of responses is relatively dense
in the lower intensities compared to the higher intensities. When
the polynomial approximation of the camera response has been
estimated, a lookup table can be formed that remaps actual re-
sponse to ideal response over the whole range of intensities from
0...255. When this lookup table transform is applied to a color
image, the response is linearized. Another important result of
this procedure is that the camera responses for all three color are
all rescaled so that white patches are properly white-balanced.
In other words, this calibration procedure compensates for the
camera response and the color of the illumination at the same
time. As we can see in Fig. 3, not only is the overall contrast of
the image enhanced from the linearization, but the hues in the
image have been corrected for the yellowish tungsten illumina-
tion used to create this image.

Other concerns to keep in mind when acquiring color im-
ages are the response range and clipping effects. A given camera
will have a given response range for a particular aperture setting
on its lens and the particular gain (response amplitude) setting.
These settings should be carefully optimized for the imaging en-
vironment. If the response range is too small (not enough gain or
not enough light on the sensor plane through the lens aperture),
then the signal to noise ratio of the image information will be
quite low. However, because the upper and lower bounds on the
camera responses are finite, setting the gain too high or opening
the aperture too much may result in clipping of very bright re-
gions. Clipping means that very bright or very dark regions have
no useful information because their intensities are outside the re-
sponse range of the sensor. An optimal response setting can be
achieved by viewing the histogram of the color image of the Col-
orchecker chart and ensuring that it occupies at least two-thirds
of the overall response range of the camera while making sure
that the histogram does not contain any high values near either
extreme end of the range (0 or 255 for an 8-bit intensity image).
Finding the optimal range of response for our work involved an
iterative process of varying the aperture setting of the camera
lens and the gain setting of the camera sensor, examining the his-
togram of an image of the reference chart at each point, and eval-
uating by inspection what settings maximized the range of in-
tensity response while avoiding clipping of bright surfaces. For
color cameras in general, it may be desirable to independently
tune the gain and aperture independently for each color channel.
However, since using different gain for each color response in-
dependently would also rescale the response values, it would
be necessary to correct for these variations to white-balance the
image. For our work, we were not able to practically achieve in-
dependent gain and aperture tuning for each color channel since
this process involved the physical manipulation of the camera
hardware. Physically adjusting the camera created problems for
maintaining the position and orientation of the camera relative
to the structured light scanner used to acquire range informa-
tion that is used in later processing stages of our method. We
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(a)

Fig. 3.
contrast and correcting for the illumination color.

therefore converted our color images to grey scale and tuned
the camera settings for the combination of all three channels.

Since the brightest patch on the Colorchecker chart only has
about 88.5% reflectance, using only this chart might still result
in clipping when sampling shiny, bright objects like pale, oily
skin. To properly set the response range for scenes where there
are bright, shiny surfaces, an object of the expected type should
be placed in the scene with the chart to augment the histogram-
based inspection.

B. Spatial Distribution of the Illumination Field

Very often a significant source of intensity variation in an
image is from the variation of the illumination strength as a func-
tion of the position in the image plane. We call this the variation
of the spatial distribution of the illumination field. We assume
that light sources we will encounter are point sources, or other
configurations that can be approximated by one or more point
light sources.

For our discussion, we will first consider a single illuminant:
a GretagMacbeth Sol-Source daylight lamp. This lamp is es-
sentially a small halogen bulb within a reflective hemispherical
housing with an aperture that produces a roughly conical volume
of illumination. The field has a finite boundary, and we wish
to characterize the illumination strength as a function of posi-
tion within the illumination volume. We chose an experimental
observation approach, where we placed a white planar surface
at varying distances from the light source and observed the re-
sulting intensity strength. Fig. 4 shows two examples of the il-
lumination field on the white plane oriented perpendicularly to
the direction of illumination with 20-cm difference in distance
between the two images.

If we consider the horizontal line that passes through the
center of the brightest spot in the center of the illumination field
over a set of images, we obtain a profile of the illumination in-
tensity as a function of distance from the source and the position
in the image plane. Experimentation with the resultant intensity
curves shows that they may be well-approximated by a Gaussian
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(a) Image of a person’s hands under tungsten light before color response calibration. (b) After calibration the image response is linearized, increasing the

Fig. 4. Two examples of the illumination field on the white plane oriented
perpendicularly to the direction of illumination with 20-cm difference in
distance between the two images. Note: the outer case of the lamp is visible at
the top of the image.

(see Fig. 5). With this assumption, the intensity at a location
(7,7) in an image can be modeled by the following equation:

Isurface(i,j7 )\) = A(d)[o()\)e_62/0'12 (D

where I is the intensity of the light source at a wavelength of
A, A accounts for camera gain and is also a function of d, the
distance from the surface point that is imaged at pixel (7, j) and
the light source, £ is the angle from the axis of the illumination
cone, and o; captures the extent of angular spread of the light.
‘We performed a function minimization procedure to calculate
the best estimates of the parameters of the distributions at var-
ious distances. We found that the term o; in (1) above increases
linearly with distance from the light source according to

op = 0.1775d + 44.575 2)

where d is the distance from the light source to the planar surface
measured in millimeters and d is less than one meter. At a dis-
tance of a meter or more, the value of sigma remains constant.
We also estimated the function A(d), which increases nonlin-
early with distance according to

_ 11400000

A(d) = =170y 3)

where d is the distance from source to surface as before, in mil-
limeters. We also found that for the purposes of experimenta-
tion, the spatial variation of illumination strength is negligible
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Fig. 5. Plot of reflected intensity strength over the image plane at various distances from the daylight lamp.

at distances of 1 m or greater for this light source. This simplifi-
cation allows us to eliminate this step in color correction under
these conditions. Otherwise, calibration of the illuminant posi-
tion and orientation would be necessary to apply a linearization
to compensate for this effect in the image, as we do in our next
example.

As a multiple illumination scenario, we consider the commer-
cially-available Cyberware 3030 HRC scanner which has four
halogen bulbs arranged in a vertical line. These positions remain
fixed with respect to the camera, but the object moves in the di-
rection of the horizontal axis of the image plane, and each image
sample is taken in only a single vertical column as the object
moves. Therefore, there is no spatial variation in illumination in
the image in the horizontal direction at all. The remaining spatial
variation in the vertical direction can be expressed at a one-di-
mensional function of height in the scene. To correct this varia-
tion, we use basically the same idea as with the single daylight
lamp. We measured the intensity change in the vertical direction
again using a white plane at different depths from the camera.
The resulting intensity variation curve is recorded and converted
from a general curve (Fig. 5) to deviations from a straight line
that is horizontal and passes through the highest point on the
curve. The difference from the straight line is converted to a rel-
ative value ranging from O to 1. To correct the image, each pixel
is brightened according to the relative brightness from its asso-
ciated height. As a result, every point in the image becomes as
bright as the point with the brightest illumination.

C. Light Source Calibration

We can use the locations of the light sources that create the
image to model effects such as shading and illumination fall-off
due to increasing distance. In order to calibrate these locations

Fig. 6. Light source calibration setup illuminated by three different light
sources simultaneously. The three spheres are specular on one side (shown
on the front-most two spheres) and Lambertian on the other (as shown on the
rear-most sphere). The 3-D positions of the specularities visible on the surface
are used to triangulate for the light source positions.

explicitly, we have devised a novel calibration device. The de-
vice consists of three spheres (see Fig. 6). The locations of the
specularities that are imaged by the camera are produced by the
illuminant we wish to locate. Each pair of specularities that cor-
respond to a single light source will allow us to triangulate its po-
sition. This work is summarized here, but it described in greater
detail in [2], [22].

For many of our results we acquire images using a Cyberware
3030 HRC scanner to image registered color and range. In the
case of the Cyberware scanner, the four lights that illuminate
the scene are at fixed positions relative to the camera. However,
the camera itself moves horizontally in relation to the scene, so
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illumination positions are only constant for each vertical column
of pixels in the image. When using knowledge of illumination
position to correct color, each column of the color image much
be processed with respect to the illumination position at the time
it was captured. The light calibration methodology can still be
applied here, however.

D. Color Correction

We can use light source calibration to remove the shading on
surfaces in the image which get darker in intensity as the angle
between the surface normal and the optical axis increases. To ar-
rive at intrinsic color of surfaces, we pre process the color image
and adjust the intensity values based on the light source direc-
tion. The amount of light reflected back from the surface to the
camera depends on the reflectance properties of the surface, or
albedo. We assume a Lambertian surface, where the reflected
light varies directly with the cosine of the angle, 6, between the
direction of incoming light and the normal of the surface at a
given point. We estimate the surface normal at each pixel using
a range image and a plane-fitting method based on the covari-
ance matrix of a local region. This algorithm is given in detail in
[1]. For every point in the image, the intensity value is divided
by cos(f). Dividing the intensity values by this directionality
factor results in an image that is very close to how the surface
would appear if the entire surface were flat and oriented perpen-
dicularly with respect to the direction of illumination.

E. Detecting Where Correction Should not be Applied

An underlying assumption in our color correction strategy is
that the surface normal is changing smoothly everywhere in the
image. There are many instances where this is not the case, such
as regions representing edges, noise, and coarse surfaces. Any
region in the image where the surface normal cannot be esti-
mated well will result in an over-correction or under-correction
in the color.

Edges are a problem, since they usually represent a situa-
tion where surface orientation changes dynamically. Jump edges
are depth discontinuities where two different surfaces meet. If
the pixel overlaps two different surfaces, it will generally take
on a depth value somewhere in between the depths of the two
surfaces. This usually makes these pixels detectable via simple
thresholding, comparing the edge pixels to neighboring pixels.
Crease edges are a more subtle case. Here, two different sur-
faces are joined at an edge where the depth does not change in
any significant way, and it is only the surface type or orienta-
tion that changes. We may be able to detect this type of edge
by searching for where the surface normal changes suddenly at
the edges between two surfaces. If we perform edge detection
before we correct the color, we can create a mask of pixel posi-
tions where we do not want to correct color. The information in
the mask can also be used at higher levels of vision processing.

Noisy range pixels are a problem also, since, like edges, they
make surface normal estimation unreliable. Certain types of
noise can be reported by the scanner as void pixels. In other
cases, a noisy range reading will appear as an outlier compared
to the majority of the nearby legitimate data. These types of
outliers may be detected by a manual thresholding procedure.
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If we add this information to the mask along with the edges,
we can avoid over-correcting the color in the resultant image
where noise exists. Other types of noise, which may lie close
to the surface, can not be detected in a straightforward way, but
may be detected by computing range texture as we discussed
in Section II-E2. Range texture computation will allow us to
detect coarse regions where surface normal estimation does not
vary smoothly over the region.

1) Specular Highlights: Another assumption that we have
made until now is that the color of the pixel in the original image
is due to its body reflectance. This is only true if the surface
reflectance is matte. If the surface is shiny, then certain regions
on the surface will contribute specular reflectance that is seen by
the camera. This is especially the case where there are specular
highlights. The color at these pixels is most like the illuminant
itself and not the underlying surface. At these regions, there is
not enough body reflectance for us to be able to correct the color.
However, if we can determine where highlights are likely to be
found, we can mask them out when performing color correction,
and report them as not useful for identifying the body reflectance
properties of the underlying surface.

We can use light source calibration information and range to
test at every pixel whether the surface geometry will support a
specular reflection. Using a range image, we can estimate the
surface normal and the camera position. We can also calibrate
the location of each light source, as shown in Section II-C. The
law of reflection requires that the incoming illumination vector
and outgoing reflectance vector have equal angles with respect
to the surface normal. Additionally, since we are working with
3-D geometry, we must ensure that the illumination vector, re-
flectance vector, and surface normal are coplanar. If this rela-
tionship is satisfied, and the surface is specular, a highlight will
occur at the pixel in question. Setting a threshold on the equality
of the incoming and outgoing angles will let us detect this con-
dition at each pixel in the image. Also, we can test whether the
three vectors involved are coplanar by taking the cross product
of two of the vectors and then the dot product of the resul-
tant vector with the remaining vector. If the three vectors are
coplanar, then the dot product will be zero. Thresholding the
proximity of this dot product to zero will allow us to detect it.
When the two thresholds are satisfied simultaneously, the ge-
ometry will support a specular highlight. If the surface is in-
deed shiny, then there will be a highlight at these locations in
the image.

Properly selecting the thresholds just described is implemen-
tation-specific in several ways. The surface normals must be es-
timated using the available range data, and the quality of the
3-D surface information may vary with surface type (smoothly
varying versus highly undulating) and ranging accuracy. Out-
liers that are often present in range data may be tolerated or
not depending on the quality of the implementation of surface
normal estimation. The choice of the thresholds can also be re-
lated to the extent of the specular lobe one wants to label. An-
other less significant but still appreciable factor is the nature
of computing with floating point numbers, which prevents di-
rect comparison of the incoming and outgoing angles of reflec-
tion for equality (a small fractional number should be chosen
to compare to the difference of the angles). For our results, a
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least-squares planar fit that rejected outliers based on a fit error
measure worked best.

2) Range Texture: The idea of range texture is to extract fea-
tures of the spatial distribution of the height or depth of points
in the image. This concept is analogous to the idea of extracting
texture from intensity images, or computing features from the
spatial distribution of grey levels. Some examples of useful fea-
tures include coarseness, smoothness, regularity, and direction-
ality. Texture features are computed over a neighborhood of
pixels, since they are meaningless for a single pixel. Since range
data may change with varying positions of objects and camera
geometry, we must take care to standardize range data across a
set of images.

The data standardization procedure is as follows. We per-
form a segmentation of the range data in each neighborhood.
The range segmentation algorithm, described in detail in [23],
first performs edge detection to the range image to establish a
preliminary set of regions. Each region is then characterized by
surface fitting. First a planar fit is attempted, and if the error in
fit exceeds a threshold value, then a nonplanar fit is made using
a polynomial surface of up to degree 4. (We tuned the threshold
value on the planar fit error based on our empirical results; see
[23] for further details.) In this way each region is classified as
planar or nonplanar.

We then compute the residual error at each pixel from the
fitted surface used to segment it. If the fitted surface is planar,
then the residual error is the distance from the measured surface
location to the corresponding fitted plane location. Otherwise,
the residual error from the polynomial surface fit is computed.
Since there is no closed form solution for the residual distance
from a point to a fourth order polynomial surface, we take the
error in only in the z axis (the direction of depth measurement).

Next, the residual errors of each point from the fitted surface
are rescaled to integer values ranging from O to ., where n is a
maximum value of depth that is empirically determined based
on the images under consideration and the resolution of the
range capture device. We then normalize the residual values (di-
viding them by n?2, the dimensionality of the co-occurrence ma-
trix). The residual values are then input into a co-occurrence ma-
trix. Once the co-occurrence matrix is formed, a set of second-
order statistical feature values, such as energy, entropy, correla-
tion, etc., are computed based on the matrix entries.

F. Algorithmic Complexity

The computational complexity of our approach is quite prac-
tical compared to many other image processing algorithms. Let
us consider an image of size m X 7 in pixels. The camera re-
sponse correction is implementable as a lookup table, which re-
quires only O(mn) operations. If the light source position(s) are
known, the correction for varying distance and spatial distribu-
tion of the illumination are also O(mmn). Correction for shading
and specularity detection requires knowledge surface normal es-
timation, which is a window-based operation, making these al-
gorithms O(mnij) where the window size is ¢ x j pixels. The
algorithm that we used for finding edges in range images is scan
line based rather than pixel based, making it very efficient. Its
complexity is therefore O(m + n). The range image segmenter
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(b)
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Fig. 7. (a) Original image of three yellow blocks. (b) Color corrected image.
(c) PCT/MC segmentation of the three-block image. (d) Segmentation of
the color corrected image. A supplementary color jpg file is available at
http://ieeexplore.ieee.org.

Fig. 8. Cyberware images of three southwestern native American style pots.
(a), (c), and (e) Original color images, shaded on the right. (b), (d), and (f)
Corrected images with shading removed. A supplementary color .jpg file is
available at http://ieeexplore.icee.org.

that is used for range texture uses a surface fitting algorithm that
is pixel-based, which makes it O(mn).

III. RESULTS

In this section, we show results of the color correction system
both individually and as a whole. First, we present the results of
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(m)

Fig. 9. CD box at various orientations, with correction.

color correction that is applied to images where the various sur-
faces all conform to our assumptions of smoothness and matte
reflectance. We show how color correction can be used in scenes
illuminated with a single light source or by as many as four il-
luminants simultaneously. Next, we present a statistical anal-
ysis of the accuracy of the corrected color. We then demonstrate
the results of both our specular highlight detection methodology
and coarse surface detection methodology which identify re-
gions where color correction should not be applied. All of these
individual algorithms are then used together to demonstrate their
use as an integrated system for surface analysis and color cor-
rection.

Next, we show how our color correction system can be ap-
plied to several important applications. The first application is
objective skin color processing in burn scars (Section III-G.I)
and skin lesion detection (Section III-G.II). We also demonstrate
how color-corrected texture maps are used to produce photo-re-
alistic rerendering of complex surfaces for computer graphics
(Section III-H).

A. Color Correction With a Single Illuminant

Fig. 7(a) is an image of three yellow (not shown in this print
version) rectangular blocks on a table. We use a the PCT/MC
(principal coordinate transform/median cut) algorithm to seg-
ment the surface of different colors in the scene [24]. This
segmentation iteratively divides a 3-D space that is defined by
the principal coordinate transform of the color information.
The principal coordinate transform finds the two orthogonal
directions along which the variation of the color information is
largest, and then picks a third axis that completes a left-handed
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Corrected

Corrected

W

Original

coordinate frame. The general applicability and straightforward
implementation of this algorithm makes it a reasonable choice
for demonstration of our experimental results.

A segmentation of the original color image [Fig. 7(c)] is not
able to classify all of the vertical faces of the blocks as having
the same color because of the surface shading due to the varying
orientations of these surfaces with respect to the illumination
direction. After we applied the lighting calibration and color
correction procedures to this image, these surfaces appear much
more similar in color and the shading is mostly removed [see
Fig. 7(b)]. The resultant segmentation [in Fig. 7(d)] is now able
to correctly label all of the vertical faces as similar in color.

B. Color Correction With Multiple Illuminants

Fig. 8 shows images of southwestern native American style
pottery taken with the Cyberware scanner and the corrected
color images (not shown in this print version). The shading that
occurred due to the uneven lighting and changing surface ori-
entation of the pot surface has been removed, producing a color
image that is suitable for photo-realistic, texture-mapped 3-D
graphical rendering, as we will discuss in Section III-H.

C. Color Correction Accuracy

We would like to evaluate the performance of color correction
to see how it varies with changing geometry in the scene. To test
this, we corrected the color of a colorful box of compact discs
placed at many different angles of incidence from the camera’s
viewing direction. Fig. 9 shows the original and corrected im-
ages for each orientation, which varied from 0 to 80 degrees in
10 degree steps.
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TABLE 1
ANALYSIS OF THE VARIANCE (ANOVA) OF (a) HUE, (b) SATURATION, AND (c)
BRIGHTNESS FOR UNCORRECTED VERSUS CORRECTED COLOR PATCHES. SS IS
SUMS OF SQUARES, df 1S DEGREES OF FREEDOM, MS IS MEAN SQUARED, F IS
THE RATIO OF TWO INDEPENDENT ESTIMATES OF THE VARIANCE (THE TWO
MS VALUES), AND p IS THE PROBABILITY THAT THE VALUES OF THE
VARIATES WOULD OCCUR STRICTLY BY CHANCE

()
ANOVA of hue (p=0.867)

Source SS df MS F
Between groups | 0.0042 | 1 | 0.0042 | 0.0287
Within groups 3.822 | 26 | 0.147
Total 3.826 | 27
(b)
ANOVA of saturation (p=0.997)
Source SS df MS F
Between groups | 1.595e-7 | 1 1.595e-7 | 1.412e-5
Within groups 0.294 26 0.011
Total 0.294 27
©
ANOVA of brightness (p=0.002)
Source Ss df | MS F
Between groups | 0.822 | 1 | 0.822 | 11.66
Within groups 1.832 | 26 | 0.705
Total 2.653 | 27

There are two results from these images that are particularly
interesting. First, in the original image, Fig. 9(i), one face of the
box is so dark that no color is visible at all. In its corrected coun-
terpart, Fig. 9(j), the color is made visible. Also, in Fig. 9(k), the
orientation of the plane is unique in that it creates a specular re-
flection over almost the entire surface. Since no color correction
can be applied there, Fig. 9(1) shows the result of the specular
highlight prediction method, which nicely locates the highlight
region.

We would like to determine whether there is any variation
added to the color data by the color correction process that is
statistically significant. To show this in a way that meaningfully
correlates with color perception, we first convert the color to
the HSI color space. In this space, we can determine whether
the variation in the brightness is significant independently of
the dimensions of hue and saturation, whereas in the original
RGB space all three dimensions correlate with brightness. We
compare patches from the images in Fig. 9, where we compute
the mean hue, saturation, and brightness of 14 pairs of corre-
sponding corrected and uncorrected regions. We use ANOVA
to determine whether the difference in the variance for the hue,
saturation, and brightness is significant for the corrected and un-
corrected color patches. In the following ANOVA tables, SS is
sums of squares, df is degrees of freedom, MS is mean squared,
F is the ratio of two independent estimates of the variance (The
two MS values), and p is the probability that the values of the
variates would occur strictly by chance.

Table I(a)—(c) show the analysis of variance (ANOVA) for the
hue, saturation, and brightness, respectively. Also, Figs. 10-12
show the distributions of hue, saturation, and brightness, re-
spectively for uncorrected (column 1) and corrected (column
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Fig. 10. Distributions of hue for uncorrected (column 1) and corrected
(column 2) color patches.
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Fig. 11. Distributions of saturation for uncorrected (column 1) and corrected

(column 2) color patches.

2) color. There are a number of interesting analyzes we can
make from this. First, the p values for hue (0.867) and satura-
tion (0.997) support the null hypothesis, which states that these
color samples are drawn from the same distribution. In other
words, no statistically significant variance in hue or saturation
was added as a result of the color correction process. This is
especially important, since our goal is to establish an objective
color measure: we do not want to add any additional “noise”
to the image that would make an objective measure unreliable.
Although the actual group mean hue of the uncorrected (0.439)
versus corrected color (0.463) does shift due to the illumination
color correction procedure, the variance in hue is not signifi-
cantly different. However, the difference in brightness variation
is statistically significant (p = 0.002). This is exactly what we
expect from our procedure of reducing the variation of intensity
in the image.
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Fig. 12. Distributions of brightness for uncorrected (column 1) and corrected
(column 2) color patches.
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Fig. 13. (a) Image of four spheres with highlights. (b) Estimated positions of
highlights using light source information (in white).

D. Locating Specularities

Fig. 13(a) shows an image of four colored hemispheres
against a black background. We can test for specular high-
lights in the image using the light calibration procedure and
the surface normal estimation from range data, in this case
acquired with a K2T structured light scanner. The white areas
in Fig. 13(b) show the areas where the incoming and outgoing
light vectors are approximately equal and coplanar with the
surface normal, indicating potential highlights if the surface
is assumed to be specular. Alternatively, if range data is not
available, then given the locations of the specular highlights
in the image and an estimate of the light source direction, it is
possible to estimate the surface normal at the specular locations.
Thus, light source knowledge enhances the information that
can be derived from specularities.

Fig. 14 shows some results from images taken with the Cy-
berware scanner. The images depict two brightly colored, shiny
plastic dolls. When we apply color correction to these images,
they take on a more cartoonish look as the shading is removed.
However, the specular highlights cannot be corrected since there
is little or no body reflectance information to correct. When we
apply highlight detection to the images, we can see regions cor-
responding to the highlights. Highlights as small as one pixel in
the image can be detected using these images.

METHODOLOGY FOR EXTRACTING OBJECTIVE COLOR FROM IMAGES
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Fig. 14. Results of color correction and highlight detection on Cyberware
images. (a) and (d) Original color images of the shiny plastic dolls. (b)
and (e) are the corresponding corrected color images. (c) and (f) Possible
highlight regions in white. A supplementary color .jpg file is available at
http://ieeexplore.ieee.org

Fig. 15. Images of (a) a flat planar surface, (b) a vertically ribbed planar
surface, and (c) a bumpy, knitted planar surface.

E. Range Texture

As a first experiment for evaluating range texture, we scanned
three planar patches of varying degree of coarseness. The first
surface was a completely smooth block [Fig. 15(a)], the second
was a cloth with a vertically-ribbed texture stretched over a
block [Fig. 15(b)], and the third was a knitted sweater stretched
over a block [Fig. 15(c)]. We calculated the residual image from
the planar fit and computed co-occurrence matrix texture mea-
sures on four patches of size 50 x 50 from each of the three
range images. These texture features are listed in Table II. The
co-occurrence parameters were set at two pixels distance and
0° direction. For all these examples, a Bayesian linear classifier
was able to distinguish the three surfaces with 100% accuracy,
using six of the samples to train and six of the samples to test.
Note that the variation of these feature values from each par-
ticular sub area do not vary by a large enough amount to affect
classification.

Although these results are based on roughly planar surfaces,
this approach is generally applicable to nonplanar surfaces and
surfaces in arbitrary orientations. We have also evaluated the use
of range texture in the practical application of burn scar surface
characterization for color correction as detailed in [1].
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TABLE 11
FEATURE VALUES COMPUTED FROM FOUR DIFFERENT SUBIMAGES IN THREE
RANGE IMAGES. NOTE THAT THE FEATURE VALUES CLUSTER CLOSELY
TOGETHER IN FEATURE SPACE: A DESIRABLE QUALITY FOR INPUT TO A
CLASSIFICATION OR SEGMENTATION TASK

Surface  Feature Feature Values
Name
smooth  Energy 0.1352, 0.1624, 0.1510, 0.1770
ribbed Energy 0.0533, 0.0403, 0.0368, 0.0272
bumpy  Energy 0.01255, 0.0110, 0.0120, 0.0139
smooth  Entropy 2.2590, 2.1345, 2.1590, 2.0150
ribbed Entropy 3.3758, 3.6264, 3.7815, 3.9244
bumpy  Entropy 4.7648, 4.8156, 4.7098, 4.6300
smooth  Local 0.6316, 0.6654, 0.6669, 0.6861
Homo-
geneity
ribbed  Local 0.5264, 0.5245, 0.5472, 0.5495
Homo-
geneity
bumpy  Local 0.4911, 0.4433, 0.4688, 0.4678
Homo-
geneity
smooth  Correlation 1.64 x 10%, 1.65 x 10°%, 1.12 x 10%,
1.18 x 10°
ribbed  Correlation 1.55 x 10%, 2.63 x 10%, 6.33 x 10,
7.72 % 10*
bumpy  Correlation 6.34 x 10°, 5.84 x 10°, 5.33 x 10°,
4.22 x 10°

F. Avoiding Coarse Areas, Noise, Edges, and Highlights

To demonstrate the entire system for color correction working
in concert, we examine an image from the Cyberware scanner of
the author’s hand and arm grasping a tall, shiny mug (Fig. 16).
The long-sleeved sweater on the arm is a knitted texture that
we do not want to correct, since the surface normals of the sur-
face are not smooth. The mug is shiny and produces a specular
highlight that we want to detect to alert the user and not attempt
to remove shading from it. Additionally, the complex shape of
the hand presents a number of edges that we wish to detect and
avoid.

Fig. 16(b) shows the areas of the image (in white) where there
was no 3-D information captured by the scanner. There were no
objects in the background of this image that lay close enough to
the scanner to reflect back the laser stripe with sufficient inten-
sity to triangulate their position. Fig. 16(c) shows the edges (in
white) of the fingers that were detected by the University of Bern
range image segmenter [23], [25]. The additional white pixels
in the edge image lay on the sweater, and the edge between the
sweater and the hand. Fig. 16(d) shows the sweater region that
was segmented and then identified as having a highly coarse tex-
ture compared to the hand and mug regions. The cup and hand
regions had a lower entropy texture measure than the sweater,
indicating that these surfaces are generally smoother. In other
words, there is less variability in the residuals from the surface
fitting on the relatively smooth hand and mug surfaces than on
the bumpy sweater surface. The sweater region itself does not
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Fig. 16. Example output of the complete color correction system. (a) The
original color image. (b) The areas where no 3-D data was acquired, in white. (c)
The edges from the range image. (d) The coarse texture region. (¢) The specular
highlight region. (f) Combination of (b)—(e). (g) The corrected color image. A
supplementary color .jpg file is available at http://ieeexplore.ieee.org.

include the entire sweater surface: there is an area at the top of
the sleeve that is not included in the texture mask image. This is
a result of the range image segmentation that was used to iden-
tify the region. The sleeve was initially over-segmented into a
larger region, the one seen in the result, and several smaller re-
gions at the top of the sleeve. The size of the smaller regions was
so small that they were ignored in the resulting segmentation.
To improve the segmentation results to capture the entire sleeve
would require either exhaustive tuning of the segmentation pa-
rameters for best results, or modification of the segmentation
paradigm used to merge regions in order to avoid over-segmen-
tation. Fig. 16(e) shows the specular highlight region on the cup
surface that was identified using our highlight location method.
There are also small regions on the top finger and the hand that
are identified as having geometry to support a specular reflec-
tion. These regions are also brighter than the surrounding skin
color in the image, but the presence of hair combined with the
fact that skin is less specular than the plastic mug make these
specularities less obvious. Fig. 16(f) shows the combination of
all of the regions we have classified as areas to avoid in color cor-
rection. Finally, Fig. 16(g) shows the resulting color-corrected
image (not shown in this print version). The linearization of
camera response and the associated white-balancing effect was
applied over the whole image, as is appropriate. Also, the cor-
rection for variation over the spatial distribution of the illumina-
tion field was applied over the entire image, which is also appro-
priate. Distance variation correction does not yield noticeable
results in this image because all of the surfaces are very near
to one another in terms of depth from the camera. We see that
the hand and mug regions have the shading removed, but the
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(a)

Fig. 17. Rendering of a burn scar patient (a) before color correction and (b) after color correction.
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Fig. 18. (a) Color image of an arm with skin lesions. (b) Skin image patch after correction. (c) Segmentation based on image in (a). (d) Segmentation of skin

lesions based on image in (b).

sweater does not, since it is identified as not being smooth. The
correction of shading was also not applied at the specular high-
lights or the edges. There is a noticeable brightness variation on
the red strip on the right of the mug that is due to inaccurate 3-D
range acquisition there: the surface does not conform exactly
to a cylinder there, but it slightly warped, causing the surface
normal estimation to skew and over-correct for the shading.

G. Skin Color Correction

One practical application of color correction is in the ob-
jective measurement skin color to assist in medical diagnosis
of burn scar or for the detection of skin lesions, including
melanoma. Characterization of skin in terms of its color and
texture, as captured by cameras, is confounded by lighting and
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TABLE III
SKIN LESION DETECTION PERFORMANCE WITH UNCORRECTED
AND COLOR CORRECTED IMAGES

Image | # of ground Uncorrected Corrected
Num truth False False False False
lesions positives | negatives || positives | negatives

1 8 0 0 1 0
2 12 1 4 0 0
3 4 1 3 0 0
4 3 4 0 1 0
5 3 2 0 1 0
6 5 0 4 1 0
7 4 1 1 1 0
8 4 0 2 1 0
9 5 1 2 1 0
10 4 0 1 0 0
11 4 0 3 0 0

Total 56 10 20 7 0

shading artifacts. The method outlined in this paper can be used
as front-end processing to arrive at objective measures.

1) Burn Scar: There is a need in the field of scar therapy to
establish objective measurements of scar-related features such
as color, texture, pliability, and volume to augment current sub-
jective measurements. For instance, the rating of the color a pa-
tient’s scar depends on the variability between human observers,
the variation and color of lighting conditions surrounding the
area of observation, etc. When comparing subtle distinctions in
the quality of results between two different healing modalities
that aim for the same results, in this case returning the skin to its
original color, it is impossible to know whether the variability of
the results is due primarily to the healing methods themselves,
or simply due to the variations in observing color subjectively.
With an objective measure, we can evaluate how well a patient is
healed independently of the particular care giver who conducts
the tests.

We can use a corrected color image of a burn scar patient
to produce a photorealistic rerendering of the subject. Fig. 17
shows such a rendering of a burn scar patient before and after
color correction. After correction, the variation in the color is
much easier to see due to the brightening effect of the shading
removal. Using this rerendering technique, it is possible to see
how the patient would appear in light from different directions,
distances, or even colors. Since the variation in illumination is
removed in the corrected color image, whatever illumination is
synthetically generated by the rendering model is more realistic
than when we use the original color image.

2) Skin Lesions: Detection of skin lesions, with the ultimate
goal of screening for melanoma, is another application that can
benefit from color correction. The change in skin surface geom-
etry and the constraints on the position of lights make it difficult
to design automated image analysis algorithms to robustly lo-
cate small skin lesions. Here we demonstrate the effectiveness
of the color correction method in enhancing skin lesion segmen-
tation; we test the quality of segmentation before and after cor-
rection. Another goal of this experiment is to demonstrate the
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applicability of the method with a different range scanner, with
its own lighting arrangement. We used the Minolta 3-D Range
scanner Vivid 900, which is a triangulation-based laser range
scanner.

Fig. 18(a) and (b) show the uncorrected and corrected color
images of an arm with skin lesions on it. Fig. 18(c) and (d)
show the segmentation results on the color images in (a) and
(b), respectively. The segmentation algorithm was a simple one
based on local thresholding, followed by morphological opera-
tions. Since this segmentation step is the first one in the chain
of further processing to characterize and classify the lesions, it
is important that the missed detection rate be low, ideally zero.
Notice the missed lesion in the middle portion of the arm when
working with uncorrected images. This is due to the fact that arm
is cylindrical in nature and the lighting source does not provide
even distribution across the surface. The corrected image has a
more uniform distribution of intensity, facilitating the ready de-
tection of all the lesions.

To quantitatively evaluate the task of detection of lesions
from color corrected images, we considered 11 skin images
with skin lesions from three different subjects, taken at varying
distances from the camera. We manually marked the lesions in
each image. In total, we have 56 skin lesions. Table IIT shows
the false positive and false negative rates for uncorrected and
corrected color images. We see that for the original image we
have 36% false negative rate while with the color corrected
data set the rate is 0%. We also see that the false positive rates
improves from 18% for the original to 13% for the corrected
images.

H. Photorealistic Rerendering

In computer graphics, in order to render an object with a
heterogeneously colored surface, a technique known as texture
mapping is used. Texture mapping is the process of taking a
two-dimensional (2-D) color image and warping it to conform
to a 3-D surface. In order to produce a photorealistic rendering
of an object, the texture map (color image) must have little or
no illumination variation. The rendering process must be able to
control the illumination that is applied to the scene. Any shading
or illumination artifacts on the texture map will result in a less
realistic rendering. To acquire such an image, the illumination,
scene, and viewing geometry must be carefully controlled and
engineered. We can alleviate this need by applying our color
correction process.

Fig. 19 shows two renderings of the author’s face produced
from a Cyberware scan. In the first, uncorrected image, there is
significant shading, particularly around the eyes and neck areas.
In the second, corrected image, these shading variations have
been removed. Also note that the color has become less red
and more like a brown skin tone. This is because the camera
response calibration process removes the tendency of the color
camera to produce a redder-than-normal image.

Fig. 20 shows two renderings of a southwestern native Amer-
ican style pot, lit from the right. In the original scan, the texture
map is lit from the left, but the color corrected texture map re-
moves this shading, creating an image that appears properly lit
in the corrected rendering.
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(a)

(b)

Fig. 19. Renderings of the author’s face from a Cyberware scan (a) before correction and (b) after correction. The light source is located near the camera.

(a)

(b)

Fig. 20. Renderings of a southwestern native American style pot from a Cyberware scan (a) before correction and (b) after correction. The scene is illuminated
from the right. A supplementary color Mpeg animation is available for download at http://ieeexplore.ieee.org.

IV. CONCLUSION

We have presented here a methodology for extracting objec-
tive color from images that are made in indoor, laboratory-like
environments where the number and types of illuminants may
vary, a number of different cameras and 3-D ranging devices
may be used, and the types of objects to be images are largely
unconstrained in shape, reflectance and texture. We have
demonstrated that our method is applicable to several different
applications, such as imaging texture maps for photorealistic
rerendering, burn scar color correction, and skin lesion de-
tection. Images of scenes such as these that have shading and
highlights are corrected to eliminate variation of illumination
and model the surface reflectance parameters of an object
more accurately. The code related to this work is available at
http://marathon.csee.usf.edu/jvt

For future work, it is important for us to expand the re-
flectance modeling beyond the Lambertian reflectance that we

assume when removing shading. Estimation of the degree of
Lambertian versus specular reflectance for each surface may
yield an even more accurate measurement of intrinsic surface
color. The dichromatic surface reflectance model is one such
model that applies to dielectric (nonconducting) materials. Es-
timating of the degree of body (Lambertian) reflectance versus
surface (specular) reflectance using a model such as this would
be an important addition to color, especially for the application
of rating burn scars.
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